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A B S T R A C T   

Industrial storage tanks, used to store flammable materials in the petrochemical industry, can induce potential 
fire and explosion under specific conditions. Therefore, it is necessary to map the population and environment 
vulnerability, and, to develop procedures for emergency responses in order to reduce potential casualties. In 
order to achieve this, Convolutional Neural Networks (CNN) are used in this study using 6 classes: floating tank, 
forest, house, road, wasteland and water. Datasets are built for a total of approximately 1.4 million tiles with a 
resolution of 0.33m/pixel and their size are optimized in function of the class. The 6 associated CNN models are 
built and optimized to classify each class. The validation of the models shows that, with the exception of road and 
wasteland where the precision is only 73% and 89% respectively, the other 4 classes have a value higher than 
95%. Post-processing is performed on each prediction before aggregating these results to obtain the land cover. 
For the floating tank class, a 5 step post-processing is used based on a Density-Based Spatial Clustering of Ap-
plications with Noise algorithm (DBCAN) after which blast simulation is applied and effects on people, buildings 
and trees are obtained through 4 steps. Finally, the petrochemical site of LaemChabang in Thailand is used as 
study case. Except for the road class that is difficult to detect, land cover is well performed. Human casualties and 
surface of damaged buildings are finally estimated demonstrating the usefulness of the tool to be used for the 
emergency planning of industrial disasters.   

1. Introduction 

Industrial storage tanks are equipment used to store gas, oil and 
petrochemical products, employed for oil and petrochemical industries. 
They have the potential to cause major hazards, because of their 
dangerous features, huge volume and close layout. Flammable materials 
can induce, under specific conditions, fire and explosion accidents 
creating blast waves and thermal radiation and causing casualties, 
infrastructure damages, pollution to the environment and economic 
losses. Even if safety is the highest concern of the petrochemical in-
dustry, nevertheless, accidents may occur and their prevention aims at 
limiting their consequences. Improper emergency response can cause 
casualties (death and injuries) and huge amount of economic losses. In 
2016, more than seven foreign accidents caused 47 deaths and 151 in-
juries (Recycling Business Network, 2017). 41 deaths, 16 injuries, and 

direct economic losses of 172.37 million yuan have been the results of 
the Chinese petrochemical industry accident in 2017 (Enterprise Secu-
rity Assistant, 2019). Therefore, emergency response as SEVESO Di-
rectives in Europe (European Council, 1982) must be prepared in order 
to plan the emergency response. 

Evaluation and mapping of the population and environmental 
vulnerability around hazardous industrial sites is necessary for an 
effective preparedness and to reduce casualties and infrastructure 
damage. Areal Locations of Hazardous Atmosphere (ALOHA) and 
Geographical Information System (GIS) approaches are used to evaluate 
the vulnerability of population near the industrial area (Ma et al., 2013; 
Cheng et al., 2015; Anjana et al., 2015; Rahman et al., 2015; Anjana 
et al., 2018; Khanmohamadi et al., 2018; Nilambar et al., 2016; Lucyna, 
2016). Evaluation and mapping of human and environmental vulnera-
bility to accidental release of hazardous chemicals has been analyzed 
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(Rajeev et al., 2019). Blast waves and thermal radiation due to the ex-
plosion have been simulated and casualties and damage have been 
mapped. Moreover, an evacuation route map was proposed thanks to a 
network analysis technique of GIS which is a powerful tool to determine 
the risk and population vulnerability assessment. However, a large 
number of GIS database layers have to be prepared, usually from LULC 
(Land use –Land cover). In order to establish the right emergency 
response, automatic detection of storage tanks and the surrounding 
environment are critical information. 

Different unsupervised methods have been initially proposed to 
detect circular-shaped oil tanks. Morphological and segmentation 
methods to detect bright tanks were used (Kushwaha et al., 2013). 
Hough transform was applied to detect tanks (Cai et al., 2014), while a 
combination of quasi-circular shadows and highlighting arcs to detect 
oil tanks in synthetic aperture radar images (Xu et al., 2014). A salient 
region method for image segmentation and geometric features were 
employed for reducing the false alarms (Yao et al., 2014). 
Chord-to-point distance accumulation proposed by (Awrangjeb and Lu, 
2008) has been used by (Ok, 2014) and the symmetric nature of the 
circular oil depots has been considered by (Ok and Emre, 2015). How-
ever, these different methods have shown limitations as they detect 
tanks based on the shapes and colors and so multi-type tank detection is 
not possible. To perform it deep learning methods have been used with 
remote sensing images. Object detection took advantage of Convolu-
tional Neural Network (CNN) and are used in many fields as medicine 
(Loh et al., 2021), industry process (Xiao et al., 2021), mining (Kanghui 
et al., 2021) or storage tanks (Li and Wu, 2019; Li et al., 2022). Storage 
tank detection process can be generally divided into 3 steps: object 
detection, feature extraction and classification (Huang and Zhang, 2013; 
Li and Itti, 2011; Zhang et al., 2015). Zhang et al. (2015) proposed a 
CNN used to extract surrounding features of oil tanks combined with 
histogram of Oriented Gradients method to extract the shape informa-
tion for local areas. Five major problems were reported as follows: (1) 
effect of image contrast; (2) image resolution; (3) effect of tank di-
mensions and shape; (4); complex images with various objects and (5) 
conversion of the true-color image to the greyscale. In order to improve 
the performance a 4-stage process was proposed: region of interest 
extraction, circular object detection, feature extraction, and classifica-
tion (Jivane and Rajkumar, 2017, Moein et al., 2019). The Otsu’s 
threshold method has been used to determine the region of interest 
(Jivane and Soundrapandiyan, 2017). Then, a speeded up robust fea-
tures (SURF) technique was applied for the detection. Next, features 
extractions as Histogram Oriented Gradient was used for the extraction. 
Finally, classification was performed using a Support Vector Machine. 
Moein et al. (2019) used an improved Faster Region Based Convolu-
tional Neural Networks (R–CNN) to extract the regions of interest and a 
fast circle detection technique for the detection. Higher detection rate 
than other feature-based methods was obtained with the 4-step method. 
However, these researches are limited to the storage tank detection. 
Surrounding environment has not been investigated that is necessary to 
collect data in order to be able to perform the vulnerability map. 

By using CNN land cover, vulnerability mapping can be greatly 
facilitated. Indeed, by analyzing the prediction, information can be 
extracted and used in different external models to simulate damage, 
casualties, effect of blasts. Moreover, using this approach the number of 
database sources required can be reduced. It has been demonstrated that 
CNN for land cover has a higher predictive capability than the other 
classification algorithms such as: Support Vector Machine (SVM), 
Random Forest (RF), logistic regression and other similar methods 
(Cheolhee et al., 2019; Fernanda et al., 2020; Ma et al., 2019; Li et al., 
2019; Mahdi et al., 2020). Different classification can be performed 
using CNN, such as agricultural land (Bhosle and Musande, 2019), tree 
mortality (Jean-Daniel et al., 2019), urban coastal zones (Lu et al., 
2018), urban growing (Ruiz Emparanza et al., 2020; Chermprayong 
et al., 2020) or rural and urban area (Fitton et al., 2021;Mentet et al., 
2022). However, land cover enables to characterize only the external 

physical attributes of the land/object (size and distance). To estimate an 
effect or a consequence of a tank explosion, it is necessary to combine 
the land cover with the explosion model. However, despite the obvious 
interest of the topic, the authors have found no papers on this subject. 

The aim of this work is to propose an automatic tool to support the 
emergency in their response planning in order to reduce the potential 
casualties. The objectives are to create a land cover of petrochemical 
plants and surrounding environment using CNN models and to map the 
population and infrastructure vulnerability from a storage tank explo-
sion. The challenge of this work is to obtain an accurate land cover and 
to extract data from it that can be applied as inputs of the explosion 
model. In order to achieve it, a dataset based on 6 classes: floating 
storage tank, forest, house, road, wasteland and water, is built. Then, 
methodology to create the land cover and to simulate a storage tank 
explosion is described. An application of the methodology to a practical 
use case is performed and detailed step by step. Human casualties and 
injuries as well as the number of damaged buildings are estimated. 
Moreover, potential roads blocked by fallen trees are simulated. Finally, 
model limitations and perspective are discussed. As observed, the 
advantage of the proposed solution is from a single data source, i.e. a 
remote sensing image, to be able to provide all information needed for 
authorities. 

2. Case study 

2.1. Industrial fuel storage tank in Thailand 

Industrial fuel storage tanks or petroleum tanks, can store various 
fluids. They are used in the petroleum and chemical industries to store 
both raw materials and intermediate or finished products. They are 
classified as three main types (Chem, 2008): Fixed roof tanks, floating 
roof tanks and fixed roof tanks with internal floating roof. As the floating 
roof tank is one of the most commonly used in Thailand, work focuses on 
this type (Fig. 1a). Tanks are normally separated from the rest of the 
installation for safety reasons. However, due to the rapid urban expan-
sion, buildings can be built at a distance lower than 300 m (Fig. 1b), that 
is the distance from the leakage point where vapor cloud ignites 
(Knegtering and Pasman, 2009). 

2.2. Dataset 

To perform the land cover of petrochemical plants and surroundings 
environment 6 classes have been investigated: floating storage tank, 
forest, house, road, wasteland and water (Table 1). Satellite images are 
collected from the Sentinel images in 2022. To obtain the adequate level 
of precision, a definition of 0.33 m per pixel is chosen. A large number of 
satellite images are used to create the dataset tiles. The choice of the tile 
size is a critical point in order to maintain a significantly bigger context 
(Mnih and Hinton, 2010; Basu et al., 2015). Therefore, tiles size has been 
optimized for each class (Table 1), and examples are given in Fig. 2. 
Several researches demonstrated that a large dataset is required to reach 
an accuracy higher than 90%, (Ruiz Emparanza et al., 2020; Cherm-
prayong et al., 2020; Fitton et al., 2021; Mentet et al., 2022). In the 
current work an average of 230,000 tiles per class is produced (Table 1). 
Each class is associated to a specific CNN model and, therefore, 6 
datasets must be organized. Each dataset is built around two sub-classes: 
the investigated one and the other one that consists of everything except 
the investigated one (Table 1). As recommended in the literature, 70% of 
the total tiles have been randomly selected as a training set, and 15% for 
both validation and testing sets (Cihan et al., 2021; Xie et al., 2021; 
Elmaz et al., 2021). 
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3. Methodology 

3.1. Overview of land cover processing 

The approach proposed by (Fitton et al., 2021) to create the land 
cover is used in this study and can be summarized as follow.  

● CNN models: Building and validation of CNN models associated to 
each class  

● Prediction of each class: The overlapping process proposed by 
(Chermprayong et al., 2020) is used to reduce the classification area 
and to improve the land cover on satellite images. An overlapping 
size of one quarter of the tiles size has been used.  

● Post-processing of each predicted class: Predictions are post- 
processed by removing classified areas that are too small and too 
large to represent what they are supposed to represent. This given for 
the studied classes:  
○ House areas smaller than 2000 m2 are discarded from the model 

predictions.  
○ Roads areas smaller and larger than 2250 m2 and 10,000 m2 are 

respectively removed.  
● Land cover aggregation: The assembly of the individual prediction 

results is performed to obtain the land cover. 

3.2. Storage tank post-processing methodology 

An accurate detection of floating tanks is necessary in order to 
determine their location and size. A 5-step method is proposed in this 
work (Fig. 3): CNN prediction; Area Of Interest; Object Detection; Object 
Reconstruction and Size and density post-processing. 

3.2.1. Area Of Interest (AOI) 
From the CNN classification (Fig. 3a), a K-means clustering approach 

(Lv et al., 2019) is used to detect the different floating tank clusters. For 
each of these clusters, a square region containing the area is generated 
named in this work ‘Area Of Interest’ (Fig. 3b). 

3.2.2. Object detection (OD) 
As the floating tanks are mainly white while the ground is usually 

concrete or wasteland, it is possible to summarily extract the tanks. In 
this study, a RGB filter is applied on each AOI of the associated satellite 
image (Fig. 3c). The RGB filter has been empirically determined and 
satellite image pixels having a value higher than 190 on the 3 RGB bands 
are extracted. Finally, the floating tank prediction given by the associ-
ated CNN model is replaced by these pixels (Fig. 3d). 

3.2.3. Object Reconstruction (OR) 
Due to the OD method based on a RGB filter, extracted floating tanks 

consists of pixel clouds. Moreover, all features whose colors are within 
the filter are also extracted. Therefore, it is necessary to rebuild the 
floating tank and then to remove the false positive identification. Three 
methods are investigated in this work to obtain the number of clusters, 
K.  

● Elbow Method is used to find the number of the cluster, K, on a 
dataset through a visual technique (Thorndike, 1953; Syakur et al., 
2018; Ketchen and Shook, 1996). Using Sum Square Error calcula-
tion, a graphic is obtained and the number of clusters is distinguished 
by looking at the point position on the “elbow” arm corresponding to 
the plateau.  

● The silhouette method calculates silhouette coefficients of each point 
measuring how much a point is similar to its own cluster compared to 
the others (Shutaywi et al., 2021; Suyanto, 2017). The silhouette 
score is ranged between [1, − 1]. A value of 1 indicates that the 
clustering configuration is appropriate while a low or negative value 
suggests that the clustering configuration may have too many or too 
few clusters (Abdullah et al., 2021). 

For both of these methods, a range of candidate values of K is picked- 
up and K-Means clustering is applied for each of these values. As the OD 
provides a pixel cloud, a value of 40 is chosen in this work. 

●Density-Based Spatial Clustering of Applications with Noise algo-
rithm (DBSCAN) is a spatial clustering algorithm based on density 
(Esterm et al., 1996). Two parameters are required: distance and the 
minimum sample points (Sander et al., 1998; Schubert et al., 2017). 
DBSCAN enables the identification of complex cluster shapes and 
sizes compared to K-Means (Chang et al., 2017). The number of 
clusters, K, does not need to be known in advance. In this work, a 
distance of 15 and a number of samples of 5 have been selected 
empirically in order to limit the consumption of resources. 

Finally, knowing the number of clusters, K-means function can be 
applied to obtain tanks location and size. 

Fig. 1. Typical (a) floating storage tank and (b) surroundings of a storage tank in Thailand.  

Table 1 
Class tiles description.  

Class- 
model 

Description Number of 
investigated class 
images 

Number of ‘other’ 
class associated to 
the CNN model 

Tiles 
size 

Floating 
tank 

floating roof 
tank 

231,403 179,851 256 
× 256 

Forest vegetation and 
forest 

311,512 284,663 64 ×
64 

House large allotment 272,604 225,514 128 
× 128 

Road main and 
secondary 
roads 

173,856 301,111 64 ×
64 

Wasteland concrete, 
cement, bare 
ground 

187,374 219,832 128 
× 128 

Water water and sea 
water 

214,297 300,574 64 ×
64  
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3.2.4. Size and density post-processing 
A floating tank has standardized sizes even if some rare exception 

exists (Long and Bob, 2004). Therefore, by using K-means function, it is 
possible to remove the clusters given by the OR process that are too 
small and too large to actually be a tank. With a resolution of 
0.33m/pixel, clusters having a diameter lower and larger than 25 m and 
50 m respectively are removed. 

Due to the OR process, based on the clusterization, False Positive 
features having the same dimensions as a tank can be identified. 
Therefore, these clusters must be removed and a density-based filter is 
applied in this study. For each cluster a ratio is calculated that is defined 
as the sum of the pixels given by the OD step, over the sum of the pixel 
given by the OR step. To classify as floating tanks, a minimum ratio is set 
empirically at 30%. Therefore, the label, Lk, of each cluster, k, is 
determined by: 

Lk =

{
0,Ratiok < 30%
1,Ratiok > 30%  

where “0” and “1” indicate the “other class” and “floating tank class” 
class, respectively. 

3.3. Modeling of explosion 

Blast simulation and the estimation of the consequence on peoples, 
buildings and trees are performed using a 6 steps methodology: TNT 
charge calculation; blast radius calculation; CNN land cover modifica-
tion, Effect of the blast on people, Cost estimation and Effect of the blast 

on trees and road availability. It can be noted that thermal radiation is 
not investigated in this study. 

3.3.1. TNT charge calculation 
In first step, TNT charge is calculated using 3 sub-steps: estimation of 

mass of fuel in tank, calculation of the mass of fuel released and calcu-
lation of the equivalent mass in TNT charge. Using the floating tank CNN 
prediction (Fig. 3e), tank diameter can be measured and their volume 
can be estimated by supposing that their height has a constant value of 
14,6 m (International fire code, 2009). Using an average fuel density of 
900 kg/m3 (HVVF, 2022), the maximum mass of fuel stored in tanks can 
be calculated. In order to estimate the quantity of gas created in the 
cloud before the explosion, the mass of fuel released from the tank due to 
a leak is needed. It can be obtained by multiplying the mass released 
from the tank by a coefficient of 2 in order to report the charge in free-air 
without ground effects (Sochet, 2010). Finally, the mass equivalent of 
TNT, WTNT, can be calculated using (Sochet, 2010): 

WTNT = ηe
wf×Hf

HTNT  

where WTNT is the mass equivalent of TNT (kg), wf is the mass of fuel in 
the cloud (kg), Hf is the heat of combustion of the fuel (MJ.kg− 1), HTNT is 
the detonation energy of TNT (4.68 MJ kg− 1) and ηe is the efficiency 
factor for TNT (0.03). 

3.3.2. Blast radius calculation 
Blast consequences on human, buildings and trees are investigated as 

Fig. 2. Example of tiles of the different classes used to perform the land cover.  
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Fig. 3. Overall methodology to detect floating storage tanks.  
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follow.  

• Human effects (Alhussan, 2013; Geri, 2016): Minor injuries (bruises, 
contusions, displacements); injured peoples (fractures, loss of con-
sciousness, internal injuries) and fatalities.  

• Structure effects (Alhussan, 2013): Minor damage (windows and 
doors are forced out); affected structures (severe destruction of least 
reliable constructions, destruction of residential buildings, severe 
destruction of buildings made of cast-in-situ reinforced concrete); 
and structural collapse.  

• Tree effects (Fons et al., 1995): Affected trees (fallen tree branches) 
and fallen trees. 

For each of these different effects an overpressure and the associated 
scaled distance (CPR 1997) are given (Table 2). Finally, the actual dis-
tance can be calculated for each scaled distance using the following 
equation (Sochet, 2010): 

Actual distance= Scaled distance × (WTNT)
1/3  

3.3.3. CNN land cover modification 
In order to visualize and estimate the different blast effects (Table 2), 

initial class of the land cover are modified. Initial forest and house 
classes that are within the associated actual distance are modified 
creating the following sub-classes. On one hand, initial House class is 
divided into 3 sub-classes related to the structure effects: Minor damage, 
Affected structure and, Structural collapse classes. On the other hand, 2 
sub-classes are created for the Forest class: Affected trees and Fallen 
trees. 

3.3.4. Effect of the blast on people 
Estimation of the maximum potential human casualty is performed. 

Only people inside the buildings are considered in this work, pedestrians 
and workers around the tanks are not investigated. From the land cover 
the total surface of the different 3 sub-classes House is obtained. Then, 
the number of houses is estimated by considering an average individual 
house surface of 150 m2 (Bauer, 2020). The number of people affected 
by the blast is estimated using an average number of 3.1 people per 
house (Bauer, 2020). For collapse and affected structures, peoples are 
considered as death and severely injured respectively while buildings 
showing minor damage induce light injury. 

3.3.5. Cost estimation 
Damage cost estimation is a crucial information for public authorities 

and insurance companies. As the number of collapsed and affected 
houses is determined, damage cost can be estimated. Reconstruction and 
repair cost of 175,000 and 85,000 Baht per individual house respectively 
have been used (ADPC, 2014). 

3.3.6. Effect of the blast on trees and road availability 
Fallen trees located near a road have the possibility to block them. A 

blocked road is a large problem for an emergency as it can slow their 
progression and in the worst case, prevent them from going further. 
Therefore, creating a map with a possible blocked road can help the 

emergency teams to optimize their path. Moreover, emergency teams 
can be equipped with the appropriated tools (chainsaw …) in order to 
open the path. Maximum tree height needs to be estimated in order to 
know the critical distance between trees and roads that would affect its 
state. Height depends of the tree species and the climate condition, and a 
value of 30 m is used (Khamyong et al., 2018). A 3 sub-steps process to 
identified possible blocked roads is proposed (Fig. 4).  

• Clusterization of the fallen trees class: Fallen trees class clusters are 
identified and following the method proposed by (Fitton et al., 
2021), a window is produced around each of them at a specific dis-
tance of 30 m (Fig. 4a) 

• Road class detection: For each window, road class pixels are identi-
fied (Fig. 4b)  

• Blocked roads class creation: For each road pixel, a window of 30 ×
30 m is created and if a fallen tree pixel is detected, the road class is 
changed into blocked road class (Fig. 4c). 

3.3.7. Effect of the blast on surrounding tanks 
Storage tanks are usually grouped by creating a farm of tanks (Sirous, 

2015). This creates a scenario where the tank explosion can produce a 
domino effect where surrounding tanks can also explode (Zhang et al., 
2019). In this work, storage tanks which are located in the structural 
collapse area are considered as affected by the blast. 

4. CNN building and validation 

4.1. Model construction 

The 6 CNN structures, associated with the 6 classes, are based on four 
conventional layers and one fully connected layer (Fig. 5). As recom-
mended in the literature, all the convolutional layers had 3 × 3 kernels 
(Mujahidin et al., 2021) and the input image size depended on the class 
tiles size. To avoid overfitting, four max pooling operations are applied 
after each convolutional layer with a pooling rate of 0.4. A drop-out 
layer has been used only after the dense layer and a softmax activa-
tion is used after the output layer (Fig. 5). Rectified Linear Unit (ReLU) 
and local response normalization are used as transfer functions after all 
convolutional and dense layers. A L2 penalty multiplier (0.01) is set only 
after the dense layer. The training of the model is affected by the batch 
size that is one of the hyperparameters and has been optimized. The 
network has been trained under the Windows environment using Python 
3.9.12 and Tensorflow 2.9.1 and on a computer with an Intel i5 pro-
cessor 12th Gen with 3.3 GHz and 12 GB of RAM. Different configura-
tions for the size of each layer have been tested and the one provided the 
best results has been chosen. Models to classify floating tanks class re-
quires 16 nodes for both convolutional and the fully connected layer 
while the others classes need 32 nodes. A batch size of 256 samples has 
been used for all the classes and the model parameters have been opti-
mized using RMSPROP with a fixed learning rate of 0.0001. To avoid the 
overfitting the model was trained using an early stopping approach with 
a patience of 50 consecutive epochs. The final weights are those that 
provided the best overall validation accuracy. 

4.2. CNN validation 

To evaluate detection performance accuracy is commonly used 
(Olson and Delen, 2008): 

Accuracy=
TP

TP + TN + FP + FN  

where TP and FP are respectively True Positive and False Positive. FN is 
False Negative while TN is True Negative. The confusion matrix provides 
an overview of both accuracy (Fig. 6). The accuracy of the CNN models 
for floating tank, forest, house and water is higher than 96%. Wasteland 

Table 2 
Blast consequence and associated scaled distance.  

Human 
effects 

Structure 
effects 

Tree effects Overpressure Scaled distance 
(m/kg3) 

Fatalities Structural 
collapse 

Fallen 
Trees 

8.00 bar 1.1 
2.00 bar 2.3 

Affected 
structures 

0.50 bar 5.0 
Injured 

peoples 
Affected 
trees 

0.07 bar 18.0 

Minor 
injuries 

Minor damage 0.03 bar 33.0  
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CNN model shows an intermediate accuracy of 88.9% while the road 
model has the lowest accuracy (73.4%). This low precision can be 
related to the low number of tiles (Table 1) as detailed by (Ruiz 
Emparanza et al., 2020; Chermprayong et al., 2020). 

5. Results 

5.1. Individual class model’s prediction 

Land cover has been performed at the petrochemical facilities of 
LaemChabang, having 15 floating tanks and representing an area of 0.8 
km2 with a resolution of 0.33 m/pixel (Fig. 7a). The prediction results of 
the house class (Fig. 7b), forest (Fig. 7c) wasteland (Fig. 7d), water 

(Fig. 7e), road (Fig. 7f), and floating tank (Fig. 7g) are shown in the 
respective Figures. The house CNN model can identify most of the 
houses except some large buildings. It can be noted that the sea border 
and some complex industrial facilities are classified under this class. 
Forest class is very well identified except that the CNN model also 
classified the water. The beach and some areas around tanks are iden-
tified as wasteland but grass is not classified. Water class is well detec-
ted. Due to the occlusion from trees and buildings roads are partially 
detected (Fig. 7f). It can be observed that the roads around the tanks are 
difficult to classify due to the industrial features, such pipes, along it. 
Finally, the floating tanks farm is classified under the right class but 
some False Positive classification are also observed. 

Fig. 4. Effect of damaged trees on road availability process.  
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5.2. Floating tank post-processing 

Object Detection methodology to obtain the tanks are applied on the 
associated CNN results (Fig. 3c). In first step, using RGB filters on the 
AOI tanks can be highlighted (Fig. 8). Due to the initial CNN prediction, 
some other types of tank are also extracted. Moreover, the RGB filter also 
extracts buildings having a white roof. 

In the second step, clustering using Elbow, Silhouette score and 
DBSCAN methods is performed in order to determine the appropriate 
method to find the number of clusters (Fig. 3d). Following the Elbow 
method, six clusters are determined (Fig. 9a), that are lower than the 15 
floating tanks observed in Fig. 7a. Silhouette score provides a better 
result than the Elbow method with 18 identified clusters. However, this 
method is time consuming with a total of 24 h to perform the analysis 
(Fig. 9b). Finally, it can be noted that this method can be applied only for 
at least 2 clusters, limiting its use. DBSCAN results show a computing 
time of about 7s that is largely faster than the 2 others methods. As 
observed, 33 clusters are identified that are largely higher than the 
number of floating tanks (Fig. 9c). 

DBSCAN provides a fast and effective way to detect at least the tanks. 
Therefore, it is necessary to remove the False Positive clusters. In last 
step, size and density post-processing are applied in order to remove it 
(Fig. 3e). Utility of the density post-processing is given through an 
example in Fig. 10. As observed, True Positive tank is well identified 
while the False Positive (in this case a pipe) can be removed from the 

classification. By applying these 2 post-processing, floating tank pre-
diction can be obtained (Fig. 11). It can be noted that one floating tank is 
removed from the classification due to the density post processing 
parameter. 

5.3. Land cover 

CNN results are aggregated in order to perform the land cover of the 
studied area (Fig. 12a). The chosen approach to determine the class of 
each pixel is to select the class having the highest accuracy amongst the 
individual CNN models. Forest and water classes are well identified. 
Buildings show a good classification, excepted near the storage tanks 
where False Positive classification is observed. Indeed, reservoir is 
detected as House class. A lot of wasteland areas and roads are not 
detected especially inside the industrial facilities and forest. Finally, the 
areas where no class has been identified are displayed in gray and 
correspond to mainly undetected roads, wasteland and other tanks types 
(Fig. 12b), and are identified under ‘Unclassified’ class. 

5.4. Blast consequence analysis 

An explosion of the closest storage tank from the buildings is 
investigated (Fig. 13). As a typical storage tank explosion creates a blast 
at 340 m, an equivalent TNT kg of 1200 tons is used. The 3 storage tanks 
near the center of the explosion are potentially damaged or destroyed 

Fig. 5. Flow chart of the Convolutional Neural Network architecture.  
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(Fig. 13). Using the proposed method, surface of damaged buildings and 
trees are obtained. The 3 sub-class related to the damage effects can be 
identified and displayed in Fig. 13. It can be noted that all buildings in 
the studied area show a potential effect. As few houses are built near the 
petrochemical facilities, collapsed houses are limited (8,350 m2) for a 
destruction cost of 225,700 US dollars. However, due to false positive 
classification of house near the tank (Fig. 12b), this number is therefore 
overestimated. Buildings which are a little further, within a range of a 
blast pressure of 0.07–0.5 bars, show a severe destruction for a surface of 
20,000 m2. All the other buildings can be potentially affected by the 
blast given an area of light damage of 300,000 m2. Number of potential 
casualties (173), severe (414) and light (6,180) injuries are estimated. 
As it is related to the surface of the collapsed house, the maximum po-
tential number of fatalities is overestimated. Fallen and affected trees 
surface is given with a surface of 13,430 m2 and 52,000 m2 respectively. 
Using the method (Fig. 4), potential blocked roads are displayed 
(Fig. 13). 

6. Discussion 

6.1. Limitation 

CNN models show limitations especially in the detection for 

wasteland and roads classes. Lands around industrial storage tanks are 
not classified as wasteland (Fig. 1b). Indeed, these area shows a complex 
feature with a mix of grass, concrete, road, pipes that is not included into 
the Wasteland dataset. Dataset improvement would enable to detect 
these areas. Moreover, a tile size of 128 × 128 pixels has been selected 
(Table 1) that is larger than areas between tanks, and therefore, 
decreasing the tiles size could help to classify. However, decreasing the 
size of tiles has an effect on the classification as the context of the class 
will be reduced and therefore could be difficult to predict (Mezeix and 
Casanova, 2022). As observed, some types of land such as the beach and 
grassland are not classified as Wasteland class. A lack of land diversity in 
the dataset explains the result of the associated CNN model. Therefore, a 
larger dataset with more representative land type should be built. 
However, to be able to classify such features, data will need to be 
collected to create the dataset, which can be challenging. 

Roads are partially detected only when there is no occlusion (Fig. 7f). 
As explained in the literature, it is difficult to extract roads from remote 
sensing images due to occlusions by trees, buildings and large shadows 
cast by buildings (Mattyus et al., 2017). Overlapping of 16 pixels (5 m) 
has been used in this study and therefore the road class detection is 
limited (Fig. 14a). The classification can be improved by reducing the 
overlapping value, but computing costs will increase (Fig. 14b). 
Different solutions have been successfully proposed in the literature to 

Fig. 6. Confusion matrix for each of the 6 CNN models.  
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Fig. 7. (a) Investigated satellite image. Prediction given by CNN models for (b) building, (c) forest and (d) wasteland, (e) water, (f) road and (g) floating tank (color 
shows the associated class). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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detect roads: combination of different models (Choudhury et al., 2020), 
use of Lidar data (Parajuli et al., 2018) and Object-oriented classification 
approach (Mhangara et al., 2011). However, both of these two ap-
proaches are complex and computationally expensive. 

In this study, blast has been simulated and fatalities/injuries number 
has been estimated from the damaged/collapsed building. As House 
class has shown False Positive classification, fatalities number has been 
overestimated. In the same way Wasteland and Road class can be 
improved, increasing the size of dataset and adding more diversity will 
enable to obtain a better House class prediction. Finally, thermal radi-
ation can impact peoples depending of the radiation level flux (Bariha 

et al., 2016). That can be simulated (Robert, 1981) using the proposed 
method and to estimate the different effects (Bhisham et al., 2015). 

6.2. Perspective 

CNN land cover enables to detect wasteland areas which are the 
zones either without vegetation nor construction. Therefore, it would be 
possible to detect potential areas where emergency base camps could be 
installed in order to rescue injured people. Different condition can be 
applied as a minimal area (The UN Refugees Agency, 2022) or area 
closes to buildings and roads for running water and electricity access. 

Fig. 8. Tank detection using RGB filter.  

Fig. 9. Results of (a) Elbow, (b) Silhouette and (c) DBSCAN methods.  
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Proposed method can be also used for other types of storage tank as 
liquefied natural gas (Zhu et al., 2021) or spherical storage tanks (Zhang 
and Wang, 2015). 

Risk is defined as a measure of human casualty, environmental 
damage and economic loss in terms of the probability of incident and its 

effects (Center for Chemical Process Safety, 2000). It is usually described 
in terms of 2 concepts: individual and societal risk (Ale, 1993; Ale, 2002; 
Bottelberghs, 2000; Renjith and Madhu, 2010). The risk estimation re-
quires gathering and integrating information about various scenarios, in 
particular looking at likelihood and consequences of these scenarios. 
Risk analysis and risk map have been performed manually for the stor-
age tanks located at the Izmit Bat in Turkey (Girgin and Krausmann, 
2013). Hand operation is time consuming and inaccurate data/-
information can be used/extracted. By combining the frequency and 
probability of incident with the data given by the method presented in 
this paper, accurate risks and risk map can be calculated and proposed to 
the safety policy maker. 

7. Conclusions 

Gas, oil, and petrochemical products employed for oil and petro-
chemical industries are stored into industrial storage tanks. Fire and 
explosion accidents due to flammable materials can create blast waves 
and thermal radiation causing casualties, infrastructure damages, 
pollution to the environment and economic losses. In order to establish 
the right emergency response and to facilitate it, two critical information 
must be obtained. Firstly, to be able to detect automatically storage 
tanks and the surrounding environment and, secondly to determine and 
visualize the effect/consequence of a tank explosion. In this work, data 

Fig. 10. Example of density post-processing.  

Fig. 11. Floating tanks prediction after processing.  

Fig. 12. (a) Satellite image and (b) land cover and of the petrochemical facilities of LaemChabang.  
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obtained from a land cover, performed by CNN models, are used as input 
of blast model/simulation enabling automatically the estimation of 
human casualties/injuries and of damaged buildings. The advantage of 
the proposed method is to be able to provide all information required by 
the authorities from only 1 data source. 

First, to perform it, 6 classes dataset are built: floating storage tank, 
forest, house, road, wasteland and water for a total number of tiles of 
about 1.4 million. Satellite images with a resolution of 0.33 m/pixel are 
used. Tiles size has been optimized for each class. Floating tank requires 
tiles of 256 × 256 pixels in order to have enough contact to be classified. 
House and wasteland need a size of 128 × 128 pixels while the others 
classes need smaller tiles (64 × 64 pixels). Then, each CNN model 
associated with each class is developed, optimized and validated. Re-
sults show an accuracy higher than 96% for house, forest, floating tank 
and water. Due to the small size of the dataset, wasteland and roads have 
low accuracy with a value of 88.9% and 73.4% respectively. The pro-
posed method using DBSCAN to post-process the floating tank detection 
shows its effectiveness to precisely obtain their size and location. The 
land cover is achieved by aggregating the different predictions. Un-
classified areas are mainly roads, large buildings and some wasteland as 
grassland. In order to improve the land cover, the wasteland dataset 
must be upgraded by adding a larger diversity of land. By reducing the 
overlapping, roads detection can be improved but computing resources 

will significantly increase. Secondly, blast simulation is performed based 
and the overpressure created by the explosion. Different types of effects 
are investigated: human, building and trees. Building and trees class are 
modified on the CNN in order to be able to displayed these effects. From 
the type of building damage, human casualties/injuries are estimated. 
Potential roads blocked by fallen trees are given by the method and 
display on the remote sensing image. From the case study of Laem-
Chabang petrochemical facility, the tool shows efficiency to help the 
emergency to plan the response. 
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